Self-aligned, full solution process polymer field-effect transistor on flexible substrates
نویسندگان
چکیده
Conventional techniques to form selective surface energy regions on rigid inorganic substrates are not suitable for polymer interfaces due to sensitive and soft limitation of intrinsic polymer properties. Therefore, there is a strong demand for finding a novel and compatible method for polymeric surface energy modification. Here, by employing the confined photo-catalytic oxidation method, we successfully demonstrate full polymer filed-effect transistors fabricated through four-step spin-coating process on a flexible polymer substrate. The approach shows negligible etching effect on polymeric film. Even more, the insulating property of polymeric dielectric is not affected by the method, which is vital for polymer electronics. Finally, the self-aligned full polymer field-effect transistors on the flexible polymeric substrate are fabricated, showing good electrical properties and mechanical flexibility under bending tests.
منابع مشابه
Frequency Characteristics of Polymer Field-Effect Transistors with Self-Aligned Electrodes Investigated by Impedance Spectroscopy
Solution-based organic field-effect transistors (OFETs) with low parasitic capacitance have been fabricated using a self-aligned method. The self-aligned processes using a cross-linking polymer gate insulator allow fabricating electrically stable polymer OFETs with small overlap area between the source-drain electrodes and the gate electrode, whose frequency characteristics have been investigat...
متن کاملComplementary Metal–Oxide–Semiconductor Thin-Film Transistor Circuits From a High-Temperature Polycrystalline Silicon Process on Steel Foil Substrates
We fabricated CMOS circuits from polycrystalline silicon films on steel foil substrates at process temperatures up to 950 C. The substrates were 0.2-mm thick steel foil coated with 0.5m thick SiO2. We employed silicon crystallization times ranging from 6 h (600 C) to 20 s (950 C). Thin-film transistors (TFTs) were made in either self-aligned or nonself-aligned geometries. The gate dielectric wa...
متن کاملCharge Transport Modulation and Optical Absorption Switching in Organic Electronic Devices
Organic electronics has evolved into a well-established research field thanks to major progresses in material sciences during recent decades. More attention was paid to this research field when “the discovery and development of conductive polymers” was awarded the Nobel Prize in Chemistry in 2000. Electronic devices that rely on tailor-made material functionalities, the ability of solution proc...
متن کاملNovel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices.
We present a novel nanotube-on-insulator (NOI) approach for producing high-yield nanotube devices based on aligned single-walled carbon nanotubes. First, we managed to grow aligned nanotube arrays with controlled density on crystalline, insulating sapphire substrates, which bear analogy to industry-adopted silicon-on-insulator substrates. On the basis of the nanotube arrays, we demonstrated reg...
متن کاملConductive Polythiophene Nanoparticles Deposition on Transparent PET Substrates: Effect of Modification with Hybrid Organic-inorganic Coating (RESEARCH NOTE)
In this work, Poly(ethyleneterephthalate) (PET) substrate was treated using KOH solution and was modified using hybrid O-I coating containing PCL )polycaprolactone( as organic phase and TEOS )tetraethoxysilane( as inorganic phase. The coating was prepared through a sol-gel process and applied on the surface by dip coater. Then, electrically conducting polythiophene (PTh) nanoparticles were depo...
متن کامل